On non-gradient $$(m,\rho )$$-quasi-Einstein contact metric manifolds

نویسندگان

چکیده

Many authors have studied Ricci solitons and their analogs within the framework of (almost) contact geometry. In this article, we thoroughly study $$(m,\rho )$$ -quasi-Einstein structure on a metric manifold. First, prove that if K-contact or Sasakian manifold $$M^{2n+1}$$ admits closed structure, then it is an Einstein constant scalar curvature $$2n(2n+1)$$ , for particular case—a non-Sasakian $$(k,\mu -contact structure—it locally isometric to product Euclidean space $${\mathbb {R}}^{n+1}$$ sphere $$S^n$$ 4. Next, compact H-contact whose potential vector field V collinear Reeb field, $$\eta $$ -Einstein

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On quasi Einstein manifolds

The object of the present paper is to study some properties of a quasi Einstein manifold. A non-trivial concrete example of a quasi Einstein manifold is also given.

متن کامل

On K-contact Einstein Manifolds

The object of the present paper is to characterize K-contact Einstein manifolds satisfying the curvature condition R · C = Q(S,C), where C is the conformal curvature tensor and R the Riemannian curvature tensor. Next we study K-contact Einstein manifolds satisfying the curvature conditions C ·S = 0 and S ·C = 0, where S is the Ricci tensor. Finally, we consider K-contact Einstein manifolds sati...

متن کامل

ON N(k)-QUASI EINSTEIN MANIFOLDS

N(k)-quasi Einstein manifolds are introduced and studied.

متن کامل

Einstein Manifolds and Contact Geometry

We show that every K-contact Einstein manifold is Sasakian-Einstein and discuss several corollaries of this result.

متن کامل

On Contact Metric R-Harmonic Manifolds

In this paper we consider contact metric R-harmonic manifolds M with ξ belonging to (κ, μ)-nullity distribution. In this context we have κ ≤ 1. If κ < 1, then M is either locally isometric to the product E × S(4), or locally isometric to E(2) (the group of the rigid motions of the Euclidean 2-space). If κ = 1, then M is an Einstein-Sasakian manifold. Mathematics Subject Classification: 53C05, 5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry

سال: 2021

ISSN: ['0047-2468', '1420-8997']

DOI: https://doi.org/10.1007/s00022-021-00576-5